Investigation of pure and Co2+-doped ZnO quantum dot electronic structures using the density functional theory: choosing the right functional

نویسندگان

  • Ekaterina Badaeva
  • Yong Feng
  • Daniel R Gamelin
  • Xiaosong Li
چکیده

The electronic structures of pure and Co-doped ZnO quantum dots (QDs) with sizes up to 300 atoms were investigated using three different density functional theory approximations: local spin density approximation (LSDA), gradient-corrected Perdew–Burke–Ernzerhof (PBE) and the hybrid PBE1 functionals with LANL2DZ pseudo-potential and associated basis set. Qualitative agreement among the three methods is found for the pure ZnO nanostructures, but only the hybrid functional reproduces the correct bandgap energies quantitatively. For Co-doped ZnO QDs, both LSDA and PBE incorrectly model interactions between Co d levels and the valence band of ZnO, which will strongly impair predictions of dopant–carrier magnetic exchange interactions based on such computational results. Experimental observations are reproduced well in calculations at the hybrid PBE1 level of theory, making this the method of choice for exploring the magnetism of transition metal ions in ZnO QDs computationally. The qualitative features of the Co 3d levels do not change appreciably with changes in cluster size over the range examined, leading to size-dependent dopant-band edge energy differences. The results presented here thus provide an experimentally calibrated framework for future ab initio descriptions of dopant–carrier and dopant–dopant magnetic exchange interactions in diluted magnetic semiconductors (DMS) nanocrystals. 1 Author to whom any correspondence should be addressed. New Journal of Physics 10 (2008) 055013 1367-2630/08/055013+12$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles

Adsorption of NO2 molecule on pristine and N-doped TiO2 anatase nanoparticles have been studied using the density functional theory (DFT) technique. The structural properties (such as bond lengths and bond angles) and the electronic properties (such as density of states, band structures and atomic partial charges) have been computed for considered nanoparticles. The result...

متن کامل

Density functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles

Adsorption of NO2 molecule on pristine and N-doped TiO2 anatase nanoparticles have been studied using the density functional theory (DFT) technique. The structural properties (such as bond lengths and bond angles) and the electronic properties (such as density of states, band structures and atomic partial charges) have been computed for considered nanoparticles. The result...

متن کامل

Investigating the Effect of Doping Graphene with Silicon in the Adsorption of Alanine by Density Functional Theory

In this investigation, the influence of doping graphene with silicon in the adsorption of alanine amino acid was inspected computationally. For this purpose, the structures of pure graphene, silicon doped graphene, alanine and 10 derived products of the alanine reaction with pure and silicon doped nano-adsorbents were optimized geometrically. Afterwards, the values of adsorption energy, formati...

متن کامل

TiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study

We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008